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Abstract 

In this paper, we want to discuss interpolating best approximation in a finite 
dimensional space and a Hilbert space, and we obtain some properties of this kind. 

1. Introduction 

Let M be a subset of the normed linear space X. For any ,Xx ∈  the 
(possibly empty) set of best approximations to x from M is defined by 
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( ) { ( )},,: MxdyxMyxPM =−∈=  

where ( ) { }.:inf, MyyxMxd ∈−=  

The set M is said to be proximinal (resp., Chebyshev), if for each 
,Xx ∈ ( )xPM  is nonempty (resp., is a singleton). Also, we need to concept 

of orthogonality. Let X be a normed linear space, if xXyx ,, ∈  is said to 

be orthogonal to y and is denoted by ,yx ⊥  if and only if yxx α+≤  

for any scalar .α  We called this orthogonality Birkhoff-orthogonality. In 
Hilbert space H for ,, Hyx ∈  we have ,yx ⊥  if and only if ,0, >=< yx  

where >< ..,  is inner product in H. 

Also, we note that the orthogonality is not symmetric. That is, if 
,yx ⊥  may be it is not .xy ⊥  

Definition 1.1. Let X be a normed linear space. Orthogonality on X is 
called right-additive, if 

,then,, zyxzyzx ⊥+⊥⊥  

and is called left-additive, if 

.then,, yxzyzxz +⊥⊥⊥  

The product orthogonality in a Hilbert space is right and left additive. 

Definition 1.2 [5]. Let X be a normed linear space, G be a closed 
linear subspace of X, ,\ GXx ∈  and { }nxxx ,,, 21 L  be any vector in X.  

We call interpolatory of best approximation x with respect to the set 
{ ,,, 21 Lxx  }nx  is an element Gg ∈0  with following properties 

,and 00 gxxxgx ii −⊥⊥−  

for all .,,2,1 ni L=  We put 

{ }.and: 000 gxxxgxgV iix −⊥⊥−=  

At first, we have a definition of interpolatory of best approximation. 
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Lemma 1.3. Let X be a normed linear space, G be a closed linear 
subspace of ,\, GXxX ∈  and { }nxxx ,,, 21 L  be any vector in X. If the 

orthogonality be a trans-orthogonality. Then 

(1) xV  is a closed subspace of X. 

(2) If 0g  is an interpolatory of best approximation x with respect to the 

set { },,,, 21 nxxx L  then ( ).0 xPg xV∈  

Lemma 1.4. Let H be a Hilbert space, G be a closed linear subspace of 
H, ,\ GHx ∈  and { }nxxx ,,, 21 L  be any vector in H. Then, we have 

(1) We have .:0 xVxgGgV =⊥∈I  Therefore, 0g  is an 

interpolatory of best approximation x with respect to { },,,, 21 nxxx L  if 

xg ⊥0  and ixg ⊥0  for all i. 

(2) If 0g  is an interpolatory of best approximation x with respect to the 

set { },,,, 21 nxxx L  then 0,0 >=−< gxg  for all .xVg ∈  

(3) If ( ),0 xPg xV∈  then there exists a Hy ∈  such that ,,1 yy <=  

,,,0 000 gxgxyandgg −>=−<>=−  where for all ,Hx ∈  

.,2 >=< xxx  

2. Interpolatory Best Approximation in Finite  
Dimensional Spaces 

Theorem 2.1. Let X be a finite dimensional space with a basis 
{ }.,,, 21 nxxx L  If the orthogonality is right or left additive and ixg ⊥  

for every ,,,2,1 ni L=  then .0=g  

Proof. Suppose ixg ⊥  for all i. If the orthogonality is right additive, 

then xg ⊥  for all .Xx ∈  Because .2211 nnxcxcxcx +++= L  It follows 

that .xgg +≤  If we put ,gx −=  then .0=g  Also, if orthogonality is 

left additive, then gxx +≤ , we put .gx −=  We have .0=g  
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Theorem 2.2. Let X be a finite dimensional space with a basis 
{ }.,,, 21 nxxx L  If the orthogonality is right or left additive, then xV  is 

Chebyshev. 

Proof. Suppose .Xx ∈  Then from Lemma 1.4, we show that xV  is 
proximinal. Suppose ( ),, 21 xPgg xV∈  then ii xgx ⊥−   and  ii gxx −⊥    

for every .2,1=i  If orthogonality is right additive =− 21 gg  
( ) ixgxgx ⊥−−− 12  for every i, then, by Theorem 2.1, we have 

.21 gg =  If the orthogonality is left  ( ) 2112 gggxgxxi −=−−−⊥   
for every i, then, by Theorem 2.1, we have .21 gg =  

Example 2.3. Suppose nRX =  with the Euclidean norm. Then X is 
a finite dimensional space. Then, xV  is closed Chebyshev subset of X for 

every .Xx ∈  
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