SOME RESULTS ON INTERPOLATORY BEST APPROXIMATION IN HILBERT SPACES

H. R. KAMALI¹, H. MAZAHERI² and KH. MOSAVI³

¹Department of Mathematics Islamic Azad University Ardakan Branch Iran ²Department of Mathematics Yazd University Yazd Iran e-mail: hmazaheri@yazduni.ac.ir ³Department of Mathematics

Islamic Azad University Bafgh Branch Iran

Abstract

In this paper, we want to discuss interpolating best approximation in a finite dimensional space and a Hilbert space, and we obtain some properties of this kind.

1. Introduction

Let *M* be a subset of the normed linear space *X*. For any $x \in X$, the (possibly empty) set of best approximations to *x* from *M* is defined by

Keywords and phrases: interpolating best approximation, orthogonality, Hilbert spaces.

Received August 16, 2009

© 2009 Scientific Advances Publishers

²⁰⁰⁰ Mathematics Subject Classification: 41A65, 46B50, 46B20, 41A50.

$$P_M(x) = \{ y \in M : ||x - y|| = d(x, M) \},\$$

where $d(x, M) = \inf\{||x - y|| : y \in M\}.$

The set M is said to be *proximinal* (resp., *Chebyshev*), if for each $x \in X$, $P_M(x)$ is nonempty (resp., is a singleton). Also, we need to concept of orthogonality. Let X be a normed linear space, if $x, y \in X, x$ is said to be *orthogonal* to y and is denoted by $x \perp y$, if and only if $||x|| \leq ||x + \alpha y||$ for any scalar α . We called this orthogonality *Birkhoff-orthogonality*. In Hilbert space H for $x, y \in H$, we have $x \perp y$, if and only if $\langle x, y \rangle = 0$, where $\langle ., . \rangle$ is inner product in H.

Also, we note that the orthogonality is not symmetric. That is, if $x \perp y$, may be it is not $y \perp x$.

Definition 1.1. Let *X* be a normed linear space. Orthogonality on *X* is called *right-additive*, if

$$x \perp z, y \perp z$$
, then $x + y \perp z$,

and is called *left-additive*, if

$$z \perp x, z \perp y$$
, then $z \perp x + y$.

The product orthogonality in a Hilbert space is right and left additive.

Definition 1.2 [5]. Let X be a normed linear space, G be a closed linear subspace of X, $x \in X \setminus G$, and $\{x_1, x_2, \dots, x_n\}$ be any vector in X.

We call interpolatory of best approximation x with respect to the set $\{x_1, x_2, \cdots, x_n\}$ is an element $g_0 \in G$ with following properties

$$x - g_0 \perp x_i$$
 and $x_i \perp x - g_0$,

for all $i = 1, 2, \dots, n$. We put

$$V_x = \{g_0 : x - g_0 \perp x_i \text{ and } x_i \perp x - g_0\}.$$

At first, we have a definition of interpolatory of best approximation.

Lemma 1.3. Let X be a normed linear space, G be a closed linear subspace of X, $x \in X \setminus G$, and $\{x_1, x_2, \dots, x_n\}$ be any vector in X. If the orthogonality be a trans-orthogonality. Then

(1) V_x is a closed subspace of X.

(2) If g_0 is an interpolatory of best approximation x with respect to the set $\{x_1, x_2, \dots, x_n\}$, then $g_0 \in P_{V_r}(x)$.

Lemma 1.4. Let H be a Hilbert space, G be a closed linear subspace of H, $x \in H \setminus G$, and $\{x_1, x_2, \dots, x_n\}$ be any vector in H. Then, we have

(1) We have $V_0 \cap g \in G : g \perp x = V_x$. Therefore, g_0 is an interpolatory of best approximation x with respect to $\{x_1, x_2, \dots, x_n\}$, if $g_0 \perp x$ and $g_0 \perp x_i$ for all *i*.

(2) If g_0 is an interpolatory of best approximation x with respect to the set $\{x_1, x_2, \dots, x_n\}$, then $\langle g_0, x - g \rangle = 0$ for all $g \in V_x$.

(3) If $g_0 \in P_{V_x}(x)$, then there exists a $y \in H$ such that ||y|| = 1, < y, $g - g_0 \ge 0$, and $< y, x - g_0 \ge ||x - g_0||$, where for all $x \in H$, $||x||^2 = < x, x >$.

2. Interpolatory Best Approximation in Finite Dimensional Spaces

Theorem 2.1. Let X be a finite dimensional space with a basis $\{x_1, x_2, \dots, x_n\}$. If the orthogonality is right or left additive and $g \perp x_i$ for every $i = 1, 2, \dots, n$, then g = 0.

Proof. Suppose $g \perp x_i$ for all *i*. If the orthogonality is right additive, then $g \perp x$ for all $x \in X$. Because $x = c_1x_1 + c_2x_2 + \cdots + c_nx_n$. It follows that $||g|| \leq ||g + x||$. If we put x = -g, then g = 0. Also, if orthogonality is left additive, then $||x|| \leq ||x + g||$, we put x = -g. We have g = 0.

H. R. KAMALI et al.

Theorem 2.2. Let X be a finite dimensional space with a basis $\{x_1, x_2, \dots, x_n\}$. If the orthogonality is right or left additive, then V_x is Chebyshev.

Proof. Suppose $x \in X$. Then from Lemma 1.4, we show that V_x is proximinal. Suppose $g_1, g_2 \in P_{V_x}(x)$, then $x - g_i \perp x_i$ and $x_i \perp x - g_i$ for every i = 1, 2. If orthogonality is right additive $g_1 - g_2 = x - g_2 - (x - g_1) \perp x_i$ for every i, then, by Theorem 2.1, we have $g_1 = g_2$. If the orthogonality is left $x_i \perp x - g_2 - (x - g_1) = g_1 - g_2$ for every i, then, by Theorem 2.1, we have $g_1 = g_2$.

Example 2.3. Suppose $X = R^n$ with the Euclidean norm. Then X is a finite dimensional space. Then, V_x is closed Chebyshev subset of X for every $x \in X$.

References

- [1] T. Ando, Totally positive matrices, Lin. Alg. Appl. 90 (1987), 165-219.
- [2] M. S. Bazarra and C. M. Shetty, Nonlinear Programming, Theory and Algorithms, John Wiley, New York-Chichester-Brisbane, 1979.
- [3] G. C. Birkhoff, Orthogonality in linear metric space, Duke Math. J. 1 (1935), 169-172.
- [4] J. Chmielinski, Remarks on orthogonality preserving mapping in normed spaces and some stability problems, Banach J. Math. Anal. 1(1) (2007), 117-124.
- [5] M. Fiedler and V. Ptak, On matrices with non-positive off-diagonal elements and positive principal minors, Czech. Math. J. 12 (1962), 382-400.
- [6] M. Fiedler and V. Ptak, Some generalizations of positive definiteness and monotonicity, Numer. Math. 9 (1966), 163-172,.
- [7] R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292.
- [8] C. R. Johnson and R. L. Smith, Linear interpolation problems for matrix classes and a transformational characterization of *M*-matrices, Lin. Alg. Appl. 330 (2001), 43-48.

250